Springe direkt zu Inhalt

Element-specific magnetization dynamics of complex magnetic systems probed by ultrafast magneto-optical spectroscopy

C. von Korff Schmising, F. Willems, S. Sharma, K. Yao, M. Borchert, M. Hennecke, D. Schick, I. Radu, C. Strüber, D. W. Engel, ... , J. Lüning, and S. Eisebitt – 2020

The vision to manipulate and control magnetism with light is driven on the one hand by fundamental questions of direct and indirect photon-spin interactions, and on the other hand by the necessity to cope with ever growing data volumes, requiring radically new approaches on how to write, read and process information. Here, we present two complementary experimental geometries to access the element-specific magnetization dynamics of complex magnetic systems via ultrafast magneto-optical spectroscopy in the extreme ultraviolet spectral range. First, we employ linearly polarized radiation of a free electron laser facility to demonstrate decoupled dynamics of the two sublattices of an FeGd alloy, a prerequisite for all-optical magnetization switching. Second, we use circularly polarized radiation generated in a laboratory-based high harmonic generation setup to show optical inter-site spin transfer in a CoPt alloy, a mechanism which only very recently has been predicted to mediate ultrafast metamagnetic phase transitions.

Title
Element-specific magnetization dynamics of complex magnetic systems probed by ultrafast magneto-optical spectroscopy
Author
C. von Korff Schmising, F. Willems, S. Sharma, K. Yao, M. Borchert, M. Hennecke, D. Schick, I. Radu, C. Strüber, D. W. Engel, ... , J. Lüning, and S. Eisebitt
Keywords
Ultrafast demagnetization dynamics, Transient absorption spectroscopy, Free electron laser, High harmonic generation
Date
2020
Identifier
DOI: 10.3390/app10217580
Appeared in
Appl. Sci. 10, 7580 (2020)
Type
Text